团 体 标 准

T/SATA 020-2021

海水中多元素的测定 电感耦合等离子体质谱法

Determination of multiple elements in seawater

Inductively-coupled plasma mass spectrometry

2021 - 09 - 22 发布

2021-10 - 22 实施

目 次

前	言	I	I
2		性引用文件	
3		和定义	
5		与材料	
6		设备	
7	样品		2
8		步骤	
9		计算和表示	
10	检测	则方法检出限、准确度和精密度	4
11	质量	量保障与控制	4
附:	录 A	标准溶液系列质量浓度	6
附:	录 B	电感耦合等离子体质谱仪操作条件	7
附:	录 C	方法检出限、准确度和精密度	ç

前 言

本标准按照GB/T1.1给出的规则起草。

本标准由深圳市分析测试协会提出并归口。

本标准起草单位:深圳市质量安全检验检测研究院。

本标准主要起草人:瞿翠兰、徐媛原、张兵、林敏霞、张微、肖曼、李凯华、张杨、朱颖、张晓鸿、潘剑蕾、钟仕花、钟雷响、聂婵。

本标准为首次发布。

海水中多元素的测定 电感耦合等离子体质谱法

1 范围

本标准规定了测定海水中32种元素的电感耦合等离子体质谱法。

本标准适用于海洋渔业水域,水产养殖区和海水浴场,工业用水区和滨海风景区的海水(盐度≤3%)中铍、铝、钒、铬、锰、钴、镍、铜、锌、镓、砷、硒、银、镉、铯、钡、镧、铈、镨、钕、钐、铕、钆、镝、钬、铒、铥、镱、铊、铅、钍、铀的测定。

本方法各元素的方法检出限为0.0104 µg/L~0.812 µg/L。各元素的方法检出限详见附录C。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 6682 分析实验室用水规格和试验方法

GB 17378.3-2007 海洋监测规范 第3部分: 样品采集、贮存和运输。

3 术语和定义

下列术语和定义适用于本规范。

3. 1

标准 试剂空白

是指不含待测样品用与实际样品同样的操作步骤进行的试验。对应的样品称为试剂空白。

3. 2

标准 基底样品

是指用于加标回收试验的不含待测元素的样品。

4 原理

海水样品采用电感耦合等离子体质谱仪进行检测,以元素特定质量数(质荷比m/z)定性,外标法,以待测元素质谱信号与内标元素质谱信号的强度比与待测元素的浓度成正比进行定量分析。

5 试剂与材料

除非另有说明,本方法所使用的试剂均为优级纯,水为GB/T6682规定的一级水。

5.1 **硝酸**: $\rho(HNO_3)=1.42 \text{ g/mL}$,优级纯或优级纯以上;

T/SATA 020-2021

- 5.2 硝酸溶液: 5+95 (体积比);
- 5.3 标准溶液
- 5.3.1 **外标元素贮备液**(1000mg/L或100mg/L): 铍、铝、钒、铬、锰、钴、镍、铜、锌、镓、砷、硒、银、镉、铯、钡、镧、铈、镨、钕、钐、铕、钆、镝、钬、铒、铥、镱、铊、铅、钍、铀,采用经国家认证并授予标准物质证书的单元素或多元素标准贮备液。
- 5.3.2 内标元素贮备液(1000mg/L): 钪、锗、铟、铑、铼、铋等采用经国家认证并授予标准物质证书的单元素或多元素内标标准贮备液。
- 5.4 标准溶液配制
- 5.4.1 混合标准工作溶液: 吸取适量单元素标准贮备液或多元素混合标准贮备液,用样品溶液(5.2)中所述样品)逐级稀释配成混合标准工作溶液系列,各元素质量浓度见表A.1。

注:依据样品消解溶液中元素质量浓度水平,适当调整标准系列中各元素质量浓度范围。

5. 4. 2 **内标使用液**: 取适量内标单元素贮备液或内标多元素标准贮备液,用硝酸溶液(5.2)配制合适浓度的内标使用液,内标使用液浓度见A.2。

注:内标溶液既可在配制混合标准工作溶液和样品消化液中手动定量加入,亦可由仪器在线加入。

5.5 **质谱仪调谐溶液**: ρ=1.0μg /L。宜选用含有 Li、Y、Be、Mg、Co、In、Tl、Pb 和 Bi 元素的溶液为质谱仪的调谐溶液。可直接购

买有证标准溶液配制。

- 5.6 **氦气(He)**: 氦气(大于等于99.995%);
- 5.7 **氩气(Ar)**: 氩气(大于等于99.995%) 或液氩;
- 5.8 PH试纸。
- 6 仪器设备
- 6.1 电感耦合等离子体质谱仪(ICP-MS)配置耐高盐系统。
- 6.2 PH 计。
- 7 样品
- 7.1 样品采集

样品采集参照GB17378.3-2007的相关规定执行。

7.2 样品的保存

本方法采用样品酸化后直接进样法,采集回实验室的样品立即用0.45um滤膜过滤处理,然后直接加入浓硝酸(5.1)调节pH值,使用pH计或pH试纸调节pH值为2.0。

8 分析步骤

8.1 仪器的操作参考条件

仪器操作条件见表B.1,元素分析模式见表B.2。

8.2 仪器调谐

点燃等离子体后,仪器预热稳定30分钟。用质谱仪调谐溶液(5.5)对仪器的灵敏度、氧化物和双电荷进行调谐,在仪器的灵敏度、氧化物、双电荷满足要求的条件下,质谱仪给出的调谐溶液中所含元素信号强度的相对标准偏差≤5%。在涵盖待测元素的质量数范围内进行质量校正和分辨率校验,如果质量校正结果与真实值差别超过±0.1amu或调谐元素信号的分辨率在10%峰高处所对应的峰宽超过0.6 amu~0.8amu的范围,应按照仪器使用说明书的要求将质量校正到正确值。

8.3 标准曲线的绘制

将混合标准工作溶液(5.4.1)注入电感耦合等离子体质谱仪中,测定待测元素和内标元素的信号响应值,以待测元素的浓度为横坐标,待测元素与所选内标元素响应值的比值为纵坐标,绘制标准曲线。

8.4 样品测定

按仪器设定的条件直接测定试剂空白和待测样品,得到分析试剂空白值和样品测定值。

每个样品测定前,用硝酸溶液(5.2)冲洗系统直到信号降至最低,待分析信号稳定后才可开始测定。样品测定时应加入与绘制标准曲线相同量的内标使用液(5.4.2),在相同的仪器分析条件下进行测定。若样品中待测元素浓度超出校准曲线范围,需用硝酸溶液(5.2)稀释后重新测定,稀释倍数为f。

9 结果计算和表示

9.1 计算方法

样品中元素含量按照公式(1)计算:

式中:

T/SATA 020-2021

 ρ 一样品中元素的浓度, μ g/L; ρ_1 一样品中元素的上机浓度, μ g/L; ρ_0 一基底样品中元素的上机浓度, μ g/L; f一稀释倍数。

9.2 结果表示

测定结果小数位数与方法检出限保持一致,最多保留三位有效数字。

10 检测方法检出限、准确度和精密度

10.1 检出限和定量限

本实验室对含32种元素不同浓度水平的统一样品进行了测试,方法检出限和定量限测试数据详见附录表C.1,定量限为检出限的3倍。

10.2 准确度

本方法以采集的海水样为基底样品,进行加标回收试验,各元素的加标浓度分别为 1.0μg/L、2.0μg/L、5.0μg/L、10.0μg/L、20.0μg/L、40.0μg/L。将加标样品和基底样品按上述方法进行前处理,上机测试。结果表明:

1μg/L~10μg/L 浓度加标时, 32 种元素类的平均回收率在 78.01%-109.7%之间。

10μg/L~20μg/L 浓度加标时, 32 种元素类的平均回收率在 96.31%-102.6%之间。

40μg/L浓度加标时,32种元素类的平均回收率在93.85%-107.3%之间。

方法准确度测试数据详见附录表C.2

10.3 精密度

样品中各元素含量大于100μg/L时,在重复性条件下获得的两次独立测定结果的绝对差值不得超过 算术平均值的10%;小于或等于100μg/L,在重复性条件下获得的两次独立测定结果的绝对差值不得超过 算术平均值的20%。

11 质量保障和质量控制

11.1 标准曲线:每次分析样品均应绘制校准曲线。通常情况下,校准曲线的线性关系应达到0.995以上。

- 11.2 内标:在每次分析中必须监测内标的强度,试样中内标的响应值应介于校准曲线响应值的70%~130%,否则说明仪器发生漂移或有干扰产生,应查找原因后重新分析。如果发生基体干扰,需要进行稀释后测定;如果发现样品中含有内标元素,需要更换内标或提高内标元素浓度。
- 11.3 空白:每批样品应至少做一个试剂空白。空白值应符合下列的情况之一才能被认可是可接受的:
- (1) 空白值应低于方法检出限; (2) 低于每一批样品最低测定值的10%。否则需重新查找原因,重新分析直至合格之后才能分析样品。
- 11.4 **实验室控制样品**:在每批样品中,应在试剂空白、样品基质中加入每种分析物质,其加标回收率 应在70%~120%;也可以使用有证标准样品代替加标,其测定值应在标准测定的范围内。

附录A

(资料性附录)

标准溶液系列质量浓度

A.1 ICP-MS方法中元素标准溶液系列质量浓度参见表A.1。

表A.1 ICP-MS方法中元素的标准溶液系列质量浓度

			10/114 /UA	(H4 F4 (H (D2)			
序号	元素		7	标准系列质量	浓度 (µg/L)		
/1 3	プロが、	系列1	系列2	系列3	系列4	系列5	系列6
1	铍	1	5	10	20	40	100
2	铝	1	5	10	20	40	100
3	钒	1	5	10	20	40	100
4	铬	1	5	10	20	40	100
5	锰	1	5	10	20	40	100
6	钴	1	5	10	20	40	100
7	镍	1	5	10	20	40	100
8	铜	1	5	10	20	40	100
9	锌	1	5	10	20	40	100
10	镓	1	5	10	20	40	100
11	砷	1	5	10	20	40	100
12	硒	1	5	10	20	40	100
13	银	1	5	10	20	40	100
14	镉	1	5	10	20	40	100
15	铯	1	5	10	20	40	100
16	钡	1	5	10	20	40	100
17	镧	1	5	10	20	40	100

18	铈	1	5	10	20	40	100
19	镨	1	5	10	20	40	100
20	钕	1	5	10	20	40	100
21	钐	1	5	10	20	40	100
22	铕	1	5	10	20	40	100
23	钆	1	5	10	20	40	100
24	镝	1	5	10	20	40	100
25	钬	1	5	10	20	40	100
26	铒	1	5	10	20	40	100
27	铥	1	5	10	20	40	100
28	镜	1	5	10	20	40	100
29	铊	1	5	10	20	40	100
30	铅	1	5	10	20	40	100
			5				
31	钍	1		10	20	40	100
32	轴	1	5	10	20	40	100

A.2 ICP-MS方法中内标元素使用液参考浓度。

由于不同仪器采用的蠕动泵管内径有所不同,当在线加入内标时,需考虑使内标元素在样液中的浓度,样液混合后的内标元素参考浓度范围为25μg/L~100μg/L,低质量数元素可以适当提高使用液浓度。

附录B

(规范性附录)

仪器参考条件

B.1 电感耦合等离子体质谱仪操作条件

电感耦合等离子体质谱仪操作条件见表B.1

表 B.1 电感耦合等离子体质谱仪操作条件

参数名称	参数	参数名称	参数
射频功率	1600w	雾化器	高盐雾化器

表 B.1 (续)

等离子体气流量	15.0L/min	采样锥/截取锥	镍/铂锥		
载气流量	0.6L/min	采样深度	8mm		
辅助气流量	0.9L/min	采集模式	跳峰(spectrum)		
氦气流量	4.0ml/min	检测方式	自动		
雾化室温度	2°C	每峰测定点数	3		
样品提升速率	0.5r/min	重复次数	3		

B.2电感耦合等离子体质谱仪元素分析模式

元素分析模式见表B.2

表 B.2 电感耦合等离子体质谱仪元素分析模式

序号	元素名称	元素符号	分析模式	序号	元素名称	元素符号	分析模式
1	铍	Ве	普通模式	17	镧	La	碰撞池模式
2	铝	Al	碰撞池模式	18	铈	Ce	碰撞池模式
3	钒	V	碰撞池模式	19	镨	Pr	碰撞池模式
4	铬	Cr	碰撞池模式	20	钕	Nd	碰撞池模式
5	锰	Mn	碰撞池模式	21	钐	Sm	碰撞池模式
6	钴	Со	碰撞池模式	22	铕	Eu	碰撞池模式
7	镍	Ni	碰撞池模式	23	钆	Gd	碰撞池模式
8	铜	Cu	碰撞池模式	24	镝	Dy	碰撞池模式
9	锌	Zn	碰撞池模式	25	钬	Но	碰撞池模式
10	镓	Ga	碰撞池模式	26	铒	Er	碰撞池模式
11	砷	As	碰撞池模式	27	铥	Tm	碰撞池模式
12	硒	Se	碰撞池模式	28	镱	Yb	碰撞池模式
13	银	Ag	碰撞池模式	29	铊	Tl	碰撞池模式
14	镉	Cd	碰撞池模式	30	铅	Pb	碰撞池模式
15	铯	Cs	碰撞池模式	31	钍	Th	碰撞池模式
16	钡	Ва	碰撞池模式	32	铀	U	碰撞池模式

B.3推荐的分析物质量待测元素和内标元素同位素的选择参考表

待测元素和内标元素同位素的选择参考见表B.3

表B.3 待测元素和内标元素同位素的选择参考表

でしている。「はいないには、「は、「は、「は、」」という。											
序号	元素名称	m/z	内标	序号	元素名称	m/z	内标				
1	Be	9	⁴⁵ Sc/ ⁷² Ge	17	La	139	¹⁰³ Rh/ ¹¹⁵ In				
2	Al	27	⁴⁵ Sc/ ⁷² Ge	18	Се	140	¹⁰³ Rh/ ¹¹⁵ In				
3	V	51	⁴⁵ Sc/ ⁷² Ge	19	Pr	141	¹⁰³ Rh/ ¹¹⁵ In				
4	Cr	52	⁴⁵ Sc/ ⁷² Ge	20	Nd	146	¹⁰³ Rh/ ¹¹⁵ In				
5	Mn	55	⁴⁵ Sc/ ⁷² Ge	21	Sm	147	¹⁰³ Rh/ ¹¹⁵ In				
6	Со	59	⁴⁵ Sc/ ⁷² Ge	22	Eu	153	¹⁰³ Rh/ ¹¹⁵ In				
7	Ni	60	⁴⁵ Sc/ ⁷² Ge	23	Gd	157	¹⁰³ Rh/ ¹¹⁵ In				
8	Cu	63	⁴⁵ Sc/ ⁷² Ge	24	Dy	163	¹⁰³ Rh/ ¹¹⁵ In				
9	Zn	66	⁴⁵ Sc/ ⁷² Ge	25	Но	165	¹⁰³ Rh/ ¹¹⁵ In				
10	Ga	71	⁴⁵ Sc/ ⁷² Ge	26	Er	166	¹⁰³ Rh/ ¹¹⁵ In				
11	As	75	⁴⁵ Sc/ ⁷² Ge	27	Tm	169	¹⁰³ Rh/ ¹¹⁵ In				
12	Se	78	⁴⁵ Sc/ ⁷² Ge	28	Yb	172	¹⁰³ Rh/ ¹¹⁵ In				
13	Ag	107	¹⁰³ Rh/ ¹¹⁵ In	29	Tl	205	¹⁰³ Rh/ ¹¹⁵ In				
14	Cd	111	¹⁰³ Rh/ ¹¹⁵ In	30	Pb	208	¹⁰³ Rh/ ¹¹⁵ In				
15	Cs	133	¹⁰³ Rh/ ¹¹⁵ In	31	Th	232	¹⁰³ Rh/ ¹¹⁵ In				
16	Ba	137	¹⁰³ Rh/ ¹¹⁵ In	32	U	238	¹⁰³ Rh/ ¹¹⁵ In				

附 录 C (资料性附录)

方法检出限、准确度、精密度

本方法的检出限见表C.1

表 C.1 方法检出限

序号	元素名称	元素符号	检出限 (μg/L)	定量限 (µg/L)	序号	元素名称	元素符号	检出限 (μg/L)	定量限 (µg/L)
1	铍	Ве	0.0952	0.2856	17	镧	La	0.0428	0.1284
2	铝	Al	0.285	0.855	18	铈	Ce	0.0444	0.1332
3	钒	V	0.109	0.327	19	镨	Pr	0.0180	0.054

4	铬	Cr	0.110	0.33	20	钕	Nd	0.0176	0.0528
5	锰	Mn	0.118	0.354	21	钐	Sm	0.0224	0.0672
6	钴	Co	0.0419	0.1257	22	铕	Eu	0.0156	0.0468
7	镍	Ni	0.0968	0.2904	23	钆	Gd	0.0308	0.0924
8	铜	Cu	0.205	0.615	24	镝	Dy	0.0324	0.0972
9	锌	Zn	0.532	1.596	25	钬	Но	0.0152	0.0456
10	镓	Ga	0.119	0.357	26	铒	Er	0.0166	0.0498
11	砷	As	0.152	0.456	27	铥	Tm	0.0105	0.0315
12	硒	Se	0.812	2.436	28	镱	Yb	0.0240	0.072
13	银	Ag	0.0456	0.1368	29	铊	Tl	0.763	2.289
14	镉	Cd	0.0932	0.2796	30	铅	Pb	0.158	0.474
15	铯	Cs	0.0833	0.2499	31	钍	Th	0.0514	0.1542
16	钡	Ba	0.555	1.665	32	铀	U	0.0254	0.0762

本方法的准确度和精密度见表C.2

表 C.2 方法准确度和精密度

	农 6.2 为抗压纳及和捐出及											
序号	项目	1μg/L~10μ g/L 回收率 (%)	1μg/L~10μ g/L浓度变 异系数(%)	10μg/L~20 μg/L 回收率 (%)	10μg/L~20 μg/L 浓度 变异系数	40μg/L 回收 率(%)	40μg/L浓度变 异系数(%)					
1	Be	98.83	2.49	96.61	2.20	93.85	1.71					
2	Al	82.18	5.82	86.31	3.46	102.01	1.54					
3	v	100.30	5.67	100.54	0.57	101.20	0.98					
4	Cr	100.94	1.70	100.30	0.94	99.17	1.38					
5	Mn	78.20	1.46	92.85	2.34	99.43	2.27					
6	Co	99.51	1.45	102.60	1.45	100.77	0.99					
7	Ni	101.0	5.58	101.70	1.87	99.21	1.63					
8	Cu	78.01	2.32	88.41	2.86	98.09	2.20					
9	Zn	97.67	7.26	98.10	4.60	107.33	2.22					
10	Ga	95.67	5.06	99.90	3.06	101.80	1.23					
11	As	92.61	5.71	94.64	6.75	105.35	2.54					
12	Se	100.15	6.22	97.73	8.83	102.08	2.83					
13	Ag	97.36	1.25	99.74	0.75	100.07	1.00					
14	Cd	102.91	5.01	98.60	1.53	99.35	2.04					
15	Cs	96.98	1.70	98.20	2.02	101.82	1.32					
16	Ba	91.82	11.92	96.50	3.65	102.79	2.19					

表 C.2 (续)

T/SATA 20-2021

17	La	101.34	1.45	100.70	0.86	101.66	1.17
18	Ce	100.44	1.99	100.90	1.23	101.96	1.46
19	Pr	101.62	1.10	99.90	2.02	101.41	1.78
20	Nd	101.05	2.35	98.10	1.68	99.78	1.48
21	Sm	99.19	5.15	99.10	2.12	100.76	1.08
22	Eu	100.97	1.57	99.70	1.08	101.13	1.72
23	Gd	100.79	3.70	98.70	1.78	99.34	1.60
24	Dy	101.05	2.08	100.10	1.30	98.92	1.29
25	Но	102.10	0.91	100.20	1.32	100.34	1.10
26	Er	101.00	1.59	99.00	0.88	99.85	0.87
27	Tm	101.45	1.81	99.70	0.75	100.13	1.34
28	Yb	99.67	2.30	100.70	2.51	99.76	1.57
29	Tl	105.39	1.08	100.40	0.96	101.55	1.76
30	Pb	109.70	3.00	98.40	1.59	98.89	1.93
31	Th	100.46	2.00	100.10	0.70	101.59	1.17
32	U	96.17	1.94	98.20	1.35	100.36	1.45

11